2,288 research outputs found

    Experimental investigation on performance of fabrics for indirect evaporative cooling applications

    Get PDF
    © 2016 Indirect evaporative cooling, by using water evaporation to absorb heat to lower the air temperature without adding moisture, is an extremely low energy and environmentally friendly cooling principle. The properties of the wet channel surface in an indirect evaporating cooler, i.e. its moisture wicking ability, diffusivity and evaporation ability, can greatly affect cooling efficiency and performance. Irregular fibres help to divert moisture and enlarge the wetted area, thus promoting evaporation. A range of fabrics (textiles) weaved from various fibres were experimentally tested and compared to Kraft paper, which has been conventionally used as a wet surface medium in evaporative coolers. It was found that most of the textile fabrics have superior properties in moisture wicking ability, diffusivity and evaporation ability. Compared with Kraft paper, the wicking ability of some fabrics was found to be 171%–182% higher, the diffusion ability 298%–396% higher and evaporation ability 77%–93% higher. A general assessment concerning both the moisture transfer and mechanical properties found that two of the fabrics were most suitable for indirective evaporative cooling applications

    Reliable Broadcast to A User Group with Limited Source Transmissions

    Full text link
    In order to reduce the number of retransmissions and save power for the source node, we propose a two-phase coded scheme to achieve reliable broadcast from the source to a group of users with minimal source transmissions. In the first phase, the information packets are encoded with batched sparse (BATS) code, which are then broadcasted by the source node until the file can be cooperatively decoded by the user group. In the second phase, each user broadcasts the re-encoded packets to its peers based on their respective received packets from the first phase, so that the file can be decoded by each individual user. The performance of the proposed scheme is analyzed and the rank distribution at the moment of decoding is derived, which is used as input for designing the optimal BATS code. Simulation results show that the proposed scheme can reduce the total number of retransmissions compared with the traditional single-phase broadcast with optimal erasure codes. Furthermore, since a large number of transmissions are shifted from the source node to the users, power consumptions at the source node is significantly reduced.Comment: ICC 2015. arXiv admin note: substantial text overlap with arXiv:1504.0446
    • …
    corecore